近日,中國科學(xué)院深圳先進(jìn)技術(shù)研究院醫(yī)工所微創(chuàng)中心聶澤東研究員團(tuán)隊(duì)在基于生理信息的無創(chuàng)血糖監(jiān)測技術(shù)方面取得新進(jìn)展,相關(guān)研究成果以“Noninvasive blood glucose monitoring using spatiotemporal ECG and PPG feature fusion and weight-based Choquet integral multimodel approach”為題發(fā)表在人工智能領(lǐng)域國際頂級(jí)期刊IEEE Transactions on Neural Networks and Learning Systems(中科院1區(qū),IF=14.25)。這是繼團(tuán)隊(duì)在IEEE Journal of Biomedical and Health Informatics、Knowledge-Based Systems等發(fā)文研究基于生理信息的血糖監(jiān)測/糖尿病管理的可行性后,在基于多模融合的無創(chuàng)血糖監(jiān)測方面的又一重要進(jìn)展。這一研究揭示了基于穿戴無創(chuàng)設(shè)備解析血糖變化的適用性,有望應(yīng)用于糖尿病慢病管理、高風(fēng)險(xiǎn)人群評(píng)估等。
隨著人們生活水平的提高和我國人口老齡化進(jìn)程的加快,糖尿病患病率逐年攀升。主動(dòng)血糖監(jiān)測是有效減少糖尿病和延緩并發(fā)癥的重要手段之一。目前,血糖監(jiān)測主要通過指尖采血或者基于電化學(xué)檢測技術(shù)的植入式血糖監(jiān)測設(shè)備(CGMS),然而,這些方法存在疼痛、使用壽命短、成本高等缺點(diǎn),限制了患者的依從性。因此,研發(fā)一種非侵入式、舒適便捷的無創(chuàng)監(jiān)測技術(shù)對(duì)促進(jìn)血糖監(jiān)測具有重要的意義和臨床價(jià)值。
相關(guān)研究表明,血糖濃度的變化會(huì)刺激人體自主神經(jīng)系統(tǒng),引起心電(ECG)、光電容積脈搏波(PPG)等生理信息的改變,同時(shí)考慮到ECG、PPG可通過智能可穿戴設(shè)備獲取,具有使用快捷、成本低等優(yōu)勢,如圖所示,研究人員提出了一種基于ECG及PPG多模態(tài)融合的無創(chuàng)血糖監(jiān)測技術(shù),通過采用數(shù)值計(jì)算方法及深度學(xué)習(xí)算法獲取上述生理信息的時(shí)空特征信息,并采用基于可變權(quán)重的Choquet積分算法,實(shí)現(xiàn)不同模態(tài)的決策融合。通過獲取21名志愿者共103天數(shù)據(jù),在10折交叉驗(yàn)證中,所提出的多模融合算法在血糖監(jiān)測中的MARD值達(dá)到13.42%,一致性誤差網(wǎng)格的A+B區(qū)>99%。上述研究成果為基于穿戴健康設(shè)備和家庭用健康設(shè)備實(shí)現(xiàn)無創(chuàng)血糖監(jiān)測提供了重要的理論基礎(chǔ)與技術(shù)支撐,具有廣闊的應(yīng)用前景。
李景振助理研究員為論文第一作者,聶澤東研究員為論文通訊作者。該研究得到了科技部重點(diǎn)研發(fā)計(jì)劃、國家自然科學(xué)基金、中科院STS-黃埔專項(xiàng)、中科院健康信息重點(diǎn)實(shí)驗(yàn)室的支持。
圖(a)ECG/PPG的時(shí)空特征提取流程圖;(b)實(shí)驗(yàn)測量場景;(c)實(shí)驗(yàn)結(jié)果評(píng)估
附件下載: